How to Implement a Search Engine Using Elasticsearch with TypeScript
Elasticsearch is a powerful, distributed search and analytics engine. It’s widely used for full-text search, log and metrics analysis, and complex data visualization. In this blog, we'll walk through how to implement a basic search engine using Elasticsearch with TypeScript.
Why Elasticsearch?
Elasticsearch is renowned for its:
- Speed: Near real-time search and analytics.
- Scalability: Handles petabytes of data across multiple nodes.
- Flexibility: Powerful query DSL and support for structured and unstructured data.
By combining it with TypeScript, we can leverage strong typing for better maintainability and developer experience.
Prerequisites
Before we start, make sure you have:
-
Node.js installed.
-
Elasticsearch up and running. Use Docker to set it up quickly:
bash docker run -d --name elasticsearch -p 9200:9200 -e "discovery.type=single-node" docker.elastic.co/elasticsearch/elasticsearch:8.10.2
-
TypeScript installed in your Node.js project:
bash npm install typescript --save-dev
-
Elasticsearch Client for Node.js:
bash npm install @elastic/elasticsearch
Step 1: Setting Up Elasticsearch Client
First, configure the Elasticsearch client in your TypeScript project.
typescript
import { Client } from '@elastic/elasticsearch';
const client = new Client({
node: 'http://localhost:9200', // Replace with your Elasticsearch instance
});
export default client;
Step 2: Creating an Index
An index is like a database in Elasticsearch. Let’s create a simple index for storing articles.
typescript
const createIndex = async () => {
const indexName = 'articles';
const exists = await client.indices.exists({ index: indexName });
if (!exists) {
await client.indices.create({
index: indexName,
body: {
mappings: {
properties: {
title: { type: 'text' },
content: { type: 'text' },
tags: { type: 'keyword' },
createdAt: { type: 'date' },
},
},
},
});
console.log(`Index '${indexName}' created.`);
} else {
console.log(`Index '${indexName}' already exists.`);
}
};
createIndex();
Step 3: Indexing Documents
Now, let’s add some data to the articles
index.
typescript
const indexDocument = async (doc: any) => {
await client.index({
index: 'articles',
document: doc,
});
console.log('Document indexed:', doc);
};
// Example
indexDocument({
title: 'Getting Started with Elasticsearch',
content: 'Elasticsearch is a distributed search engine...',
tags: ['search', 'elasticsearch'],
createdAt: new Date().toISOString(),
});
Step 4: Searching Documents
Elasticsearch offers powerful query capabilities. Here’s how you can perform a basic full-text search.
typescript
const searchArticles = async (query: string) => {
const result = await client.search({
index: 'articles',
body: {
query: {
match: {
content: query,
},
},
},
});
console.log(
'Search Results:',
result.hits.hits.map((hit) => hit._source)
);
};
// Example
searchArticles('Elasticsearch');
Step 5: Advanced Search Features
Elasticsearch supports filters, sorting, and pagination. Here’s an example of a filtered search.
typescript
const searchWithFilters = async (query: string, tags: string[], size: number = 10, page: number = 1) => {
const result = await client.search({
index: 'articles',
body: {
query: {
bool: {
must: {
match: { content: query },
},
filter: {
terms: { tags },
},
},
},
from: (page - 1) * size,
size,
sort: [{ createdAt: { order: 'desc' } }],
},
});
console.log(
'Filtered Search Results:',
result.hits.hits.map((hit) => hit._source)
);
};
// Example
searchWithFilters('Elasticsearch', ['search']);
Step 6: Handling Errors Gracefully
Always handle errors when interacting with Elasticsearch.
typescript
const safeSearch = async (query: string) => {
try {
const result = await client.search({
index: 'articles',
body: {
query: {
match: { content: query },
},
},
});
console.log(result.hits.hits.map((hit) => hit._source));
} catch (error) {
console.error('Search failed:', error.meta.body.error);
}
};
safeSearch('Invalid query');
Happy coding!