muho.dev
Nodejs

How to Implement a Search Engine Using Elasticsearch with TypeScript

Elasticsearch is a powerful, distributed search and analytics engine. It’s widely used for full-text search, log and metrics analysis, and complex data visualization. In this blog, we'll walk through how to implement a basic search engine using Elasticsearch with TypeScript.

Why Elasticsearch?

Elasticsearch is renowned for its:

  • Speed: Near real-time search and analytics.
  • Scalability: Handles petabytes of data across multiple nodes.
  • Flexibility: Powerful query DSL and support for structured and unstructured data.

By combining it with TypeScript, we can leverage strong typing for better maintainability and developer experience.


Prerequisites

Before we start, make sure you have:

  1. Node.js installed.

  2. Elasticsearch up and running. Use Docker to set it up quickly:

    bash
    
    docker run -d --name elasticsearch -p 9200:9200 -e "discovery.type=single-node" docker.elastic.co/elasticsearch/elasticsearch:8.10.2
    
    
    
  3. TypeScript installed in your Node.js project:

    bash
    
    npm install typescript --save-dev
    
    
    
  4. Elasticsearch Client for Node.js:

    bash
    
    npm install @elastic/elasticsearch
    
    
    

Step 1: Setting Up Elasticsearch Client

First, configure the Elasticsearch client in your TypeScript project.

typescript

import { Client } from '@elastic/elasticsearch';

const client = new Client({
  node: 'http://localhost:9200', // Replace with your Elasticsearch instance
});

export default client;



Step 2: Creating an Index

An index is like a database in Elasticsearch. Let’s create a simple index for storing articles.

typescript

const createIndex = async () => {
  const indexName = 'articles';

  const exists = await client.indices.exists({ index: indexName });

  if (!exists) {
    await client.indices.create({
      index: indexName,
      body: {
        mappings: {
          properties: {
            title: { type: 'text' },
            content: { type: 'text' },
            tags: { type: 'keyword' },
            createdAt: { type: 'date' },
          },
        },
      },
    });
    console.log(`Index '${indexName}' created.`);
  } else {
    console.log(`Index '${indexName}' already exists.`);
  }
};

createIndex();



Step 3: Indexing Documents

Now, let’s add some data to the articles index.

typescript

const indexDocument = async (doc: any) => {
  await client.index({
    index: 'articles',
    document: doc,
  });
  console.log('Document indexed:', doc);
};

// Example
indexDocument({
  title: 'Getting Started with Elasticsearch',
  content: 'Elasticsearch is a distributed search engine...',
  tags: ['search', 'elasticsearch'],
  createdAt: new Date().toISOString(),
});



Step 4: Searching Documents

Elasticsearch offers powerful query capabilities. Here’s how you can perform a basic full-text search.

typescript

const searchArticles = async (query: string) => {
  const result = await client.search({
    index: 'articles',
    body: {
      query: {
        match: {
          content: query,
        },
      },
    },
  });

  console.log(
    'Search Results:',
    result.hits.hits.map((hit) => hit._source)
  );
};

// Example
searchArticles('Elasticsearch');



Step 5: Advanced Search Features

Elasticsearch supports filters, sorting, and pagination. Here’s an example of a filtered search.

typescript

const searchWithFilters = async (query: string, tags: string[], size: number = 10, page: number = 1) => {
  const result = await client.search({
    index: 'articles',
    body: {
      query: {
        bool: {
          must: {
            match: { content: query },
          },
          filter: {
            terms: { tags },
          },
        },
      },
      from: (page - 1) * size,
      size,
      sort: [{ createdAt: { order: 'desc' } }],
    },
  });

  console.log(
    'Filtered Search Results:',
    result.hits.hits.map((hit) => hit._source)
  );
};

// Example
searchWithFilters('Elasticsearch', ['search']);



Step 6: Handling Errors Gracefully

Always handle errors when interacting with Elasticsearch.

typescript

const safeSearch = async (query: string) => {
  try {
    const result = await client.search({
      index: 'articles',
      body: {
        query: {
          match: { content: query },
        },
      },
    });
    console.log(result.hits.hits.map((hit) => hit._source));
  } catch (error) {
    console.error('Search failed:', error.meta.body.error);
  }
};

safeSearch('Invalid query');



Happy coding!